今回はモンテッソーリ活動の中の数教育のお仕事について紹介します。
切手遊び(Stamp game)について
こちらはテーブルで1人ずつ個別に集中して四則演算に取り組むことができる活動です。
ビーズの活動から一歩抽象度が高まり、同じ大きさの切手にそれぞれの数の位1、10、100、1000が書かれています。
1と1000は同じ緑色ですが、これは今後のさらに大きな数を扱っていく際の伏線になっています。
金ビーズを見てみましょう。
1は点です。10が点の連なった線で、100は線が連なった板、1000が板が連なった立方体となっていました。1は点ですが、その一粒は球体であって、小さいけど1つの立方体として捉えることもでき、1000と本質的には同様です。したがって1と1000は同じ分類になります。それで、1と1000は同じ緑色で表現します。この色分けのパターンは他のモンテッソーリ教具でも同様に一貫性を持って使用されます。
英語では10,000はTen thousandと呼びます。10,000の位は青です、10の仲間だからです。その次の位の十万はA hundred thousand 100,000となりその位は100の仲間で赤になります。コンマの付け方は万国共通で日本でも同様に使用しています。日本の一十百千は中国のシステムを輸入しているためこちらのシステムとは互換性がありませんが、英語でモンテッソーリ活動を行う場合は、ヨーロッパ生まれのモンテッソーリ教育のデザインをそのまま生かすことができます。
切手遊びでは筆算の式の表記の仕方にも親しみ、実際に書くということを行います。
小学校での学びの中でも、年長さんの頃にお仕事の時間にやったことだと思い出しながら、親しみや得意意識を持って学びを続けていくことにつながっていくことが期待できます。
10進法(decimal system)の仕組みについて見せることのできるこの活動の最も画期的なところが、繰り上がりや繰り下がり(statics)の場面です。
最初は単に1000の切手を6個+1個で7000とするだけですが、慣れて来た頃に8+4=12と10を超えてくる位が出てきます。その時には、繰り上がりでは10個集まった種類の切手を一つ上の位のビーズ1つと両替をします。繰り下がりでは、引けなくなるので、一つ下の位の切手10個と両替をします。
5,6歳になると、こうした仕組みやルール、パターンに対応できる知性が育ってきているので、楽しいゲームの1つという感覚で向き合うことができます。また、このように大きな数を使って四則演算を体験することで、それぞれのコンセプト(概念)がわかりやすく印象づくと共に、大きな数を扱うこともできるという自信もつけてあげることができます。数の楽しさという知的好奇心を満たす学びの楽しさの本質にも触れることができます。モンテッソーリ教育のまさに目指すところがここにあります。それは単に早期教育に走るのではなく、学び自体の楽しさを伝え、一見難しそうな内容も感覚的に伝わりやすい方法を駆使して、その年齢の発達段階にあった伝え方ができ、生涯にわたって基盤となる自信や学びに向き合う気持ちを育むことです。